Human Papillomavirus
and
Related Diseases Report

ETHIOPIA

Version posted at www.hpvcentre.net on 17 June 2019
Copyright and Permissions

©ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre) 2019

All rights reserved. HPV Information Centre publications can be obtained from the HPV Information Centre Secretariat, Institut Català d’Oncologia, Avda. Gran Via de l’Hospitalet, 199-203 08908 L’Hospitalet del Llobregat (Barcelona) Spain. E-mail: hpvcentre@iconcologia.net. Requests for permission to reproduce or translate HPV Information Centre publications - whether for sale or for non-commercial distribution- should be addressed to the HPV Information Centre Secretariat, at the above address.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part the HPV Information Centre concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers products does not imply that they are endorsed or recommended the HPV Information Centre in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the HPV Information Centre to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the HPV Information Centre be liable for damages arising from its use.

The development of this report has been supported by grants from the European Comission (7th Framework Programme grant HEALTH-F3-2010-242061, HEALTH-F2-2011-282562, HPV AHEAD).

Recommended citation:

Executive summary

Human papillomavirus (HPV) infection is now a well-established cause of cervical cancer and there is growing evidence of HPV being a relevant factor in other anogenital cancers (anus, vulva, vagina and penis) as well as head and neck cancers. HPV types 16 and 18 are responsible for about 70% of all cervical cancer cases worldwide. HPV vaccines that prevent HPV 16 and 18 infections are now available and have the potential to reduce the incidence of cervical and other anogenital cancers.

This report provides key information for Ethiopia on: cervical cancer; other anogenital cancers and head and neck cancers; HPV-related statistics; factors contributing to cervical cancer; cervical cancer screening practices; HPV vaccine introduction; and other relevant immunisation indicators. The report is intended to strengthen the guidance for health policy implementation of primary and secondary cervical cancer prevention strategies in the country.

Table 1: Key Statistics

<table>
<thead>
<tr>
<th>Population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Women at risk for cervical cancer (Female population aged >=15 years)</td>
<td>31.5 million</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Burden of cervical cancer and other HPV-related cancers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual number of cervical cancer cases</td>
<td>6,294</td>
</tr>
<tr>
<td>Annual number of cervical cancer deaths</td>
<td>4,884</td>
</tr>
<tr>
<td>Crude incidence rates per 100,000 and year:</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>11.7</td>
</tr>
<tr>
<td>Anal cancer ‡</td>
<td>-</td>
</tr>
<tr>
<td>Vulvar cancer ‡</td>
<td>-</td>
</tr>
<tr>
<td>Vaginal cancer ‡</td>
<td>-</td>
</tr>
<tr>
<td>Penile cancer ‡</td>
<td>-</td>
</tr>
<tr>
<td>Oropharyngeal cancer</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Burden of cervical HPV infection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence (%) of HPV 16 and/or HPV 18 among women:</td>
<td></td>
</tr>
<tr>
<td>Normal cytology</td>
<td>4.7 †</td>
</tr>
<tr>
<td>Low-grade cervical lesions (LSIL/CIN-1)</td>
<td>30.0 †</td>
</tr>
<tr>
<td>High-grade cervical lesions (HSIL/CIN-2/CIN-3/CIS)</td>
<td>63.6</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>96.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other factors contributing to cervical cancer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking prevalence (%), women</td>
<td>0.5 [0.2-0.8]</td>
</tr>
<tr>
<td>Total fertility rate (live births per women)</td>
<td>4.4</td>
</tr>
<tr>
<td>Oral contraceptive use (%) among women</td>
<td>2.1</td>
</tr>
<tr>
<td>HIV prevalence (%), adults (15-49 years)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sexual behaviour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of 15-year-old who have had sexual intercourse (men/women)</td>
<td>2 / 11</td>
</tr>
<tr>
<td>Range of median age at first sexual intercourse (men/women)</td>
<td>20.9-21.8 / 15.6-18.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical screening practices and recommendations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical cancer screening coverage, % (age and screening interval, reference)</td>
<td>0.8% (All women aged 25-64 screened every 3y, WHS 2003 Ethiopia)</td>
</tr>
<tr>
<td>Screening ages (years)</td>
<td>-</td>
</tr>
<tr>
<td>Screening interval (years) or frequency of screens</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPV vaccine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV vaccine introduction</td>
<td>Pilot</td>
</tr>
<tr>
<td>HPV vaccination programme</td>
<td>-</td>
</tr>
<tr>
<td>Date of HPV vaccination routine immunization programme start</td>
<td>-</td>
</tr>
</tbody>
</table>

†Please see the specific sections for more information.
‡The data is the subregion Eastern Africa
Contents

Executive summary iii

1 Introduction 2

2 Demographic and socioeconomic factors 4

3 Burden of HPV related cancers 6

3.1 Cervical cancer 6

3.1.1 Cervical cancer incidence in Ethiopia 6

3.1.2 Cervical cancer incidence by histology in Ethiopia 10

3.1.3 Cervical cancer incidence in Ethiopia across Eastern Africa 12

3.1.4 Cervical cancer mortality in Ethiopia 14

3.1.5 Cervical cancer mortality in Ethiopia across Eastern Africa 18

3.1.6 Cervical cancer incidence and mortality comparison, Premature deaths and disability in Ethiopia 20

3.2 Anogenital cancers other than the cervix 22

3.2.1 Anal cancer 22

3.2.2 Vulvar cancer 24

3.2.3 Vaginal cancer 25

3.2.4 Penile cancer 26

3.3 Head and neck cancers 27

3.3.1 Oropharyngeal cancer 27

4 HPV related statistics 30

4.1 HPV burden in women with normal cervical cytology, cervical precancerous lesions or invasive cervical cancer 30

4.1.1 HPV prevalence in women with normal cervical cytology 31

4.1.2 HPV type distribution among women with normal cervical cytology, precancerous cervical lesions and cervical cancer 32

4.1.3 HPV type distribution among HIV+ women with normal cervical cytology 40

4.1.4 Terminology 41

4.2 HPV burden in anogenital cancers other than cervix 42

4.2.1 Anal cancer and precancerous anal lesions 42

4.2.2 Vulvar cancer and precancerous vulvar lesions 44

4.2.3 Vaginal cancer and precancerous vaginal lesions 46

4.2.4 Penile cancer and precancerous penile lesions 48

4.3 HPV burden in men 50

4.4 HPV burden in the head and neck 51

4.4.1 Burden of oral HPV infection in healthy population 51

4.4.2 HPV burden in head and neck cancers 51

5 Factors contributing to cervical cancer 53

6 Sexual and reproductive health behaviour indicators 55

7 HPV preventive strategies 57

7.1 Cervical cancer screening practices 57

7.2 HPV vaccination 59

8 Protective factors for cervical cancer 59
9 Indicators related to immunisation practices other than HPV vaccines 61
 9.1 Immunisation schedule .. 61
 9.2 Immunisation coverage estimates 61

10 Glossary 62
List of Figures

1 Ethiopia and Eastern Africa .. 2
2 Population pyramid of Ethiopia for 2017 4
3 Population trends in four selected age groups in Ethiopia 4
4 HPV-related cancer incidence in Ethiopia (estimates for 2012) 6
5 Comparison of cervical cancer incidence to other cancers in women of all ages in Ethiopia (estimates for 2018) . 7
6 Comparison of age-specific cervical cancer to age-specific incidence of other cancers among women 15-44 years of age in Ethiopia (estimates for 2018) . 8
7 Annual number of cases and age-specific incidence rates of cervical cancer in Ethiopia (estimates for 2018) . 9
8 Time trends in cervical cancer incidence in Ethiopia (cancer registry data) ... 11
9 Age-standardised incidence rates of cervical cancer of Ethiopia (estimates for 2018) ... 12
10 Annual number of new cases of cervical cancer by age group in Ethiopia (estimates for 2018) . 13
11 Comparison of cervical cancer mortality to other cancers in women of all ages in Ethiopia (estimates for 2018) . 15
12 Comparison of age-specific mortality rates of cervical cancer to other cancers among women 15-44 years of age in Ethiopia (estimates for 2018) . 16
13 Annual number of deaths and age-specific mortality rates of cervical cancer in Ethiopia (estimates for 2018) . 17
14 Comparison of age-standardised cervical cancer mortality rates in Ethiopia and countries within the region (estimates for 2018) . 18
15 Annual deaths number of cervical cancer by age group in Ethiopia (estimates for 2018) . 19
16 Comparison of age-specific cervical cancer incidence and mortality rates in Ethiopia (estimates for 2018) . 20
17 Comparison of annual premature deaths and disability from cervical cancer in Ethiopia to other cancers among women (estimates for 2008) . 21
18 Time trends in anal cancer incidence in Ethiopia (cancer registry data) ... 23
19 Time trends in vulvar cancer incidence in Ethiopia (cancer registry data) ... 24
20 Time trends in vaginal cancer incidence in Ethiopia (cancer registry data) ... 25
21 Time trends in penile cancer incidence in Ethiopia (cancer registry data) ... 26
22 Comparison of incidence and mortality rates of the oropharynx by age group and sex in Ethiopia (estimates for 2018). Includes ICD-10 codes: C09-10 ... 28
23 Crude age-specific HPV prevalence (%) and 95% confidence interval in women with normal cervical cytology in Ethiopia ... 31
24 HPV prevalence among women with normal cervical cytology in Ethiopia, by study ... 31
25 HPV 16 prevalence among women with normal cervical cytology in Ethiopia, by study ... 32
26 HPV 16 prevalence among women with low-grade cervical lesions in Ethiopia, by study ... 32
27 HPV 16 prevalence among women with high-grade cervical lesions in Ethiopia, by study ... 33
28 HPV 16 prevalence among women with invasive cervical cancer in Ethiopia, by study ... 33
29 Comparison of the ten most frequent HPV oncogenic types in Ethiopia among women with and without cervical lesions ... 34
30 Comparison of the ten most frequent HPV oncogenic types in Ethiopia among women with invasive cervical cancer by histology ... 35
31 Comparison of the ten most frequent HPV types in anal cancer cases in Africa and the World ... 43
32 Comparison of the ten most frequent HPV types in AIN 2/3 cases in Africa and the World ... 43
33 Comparison of the ten most frequent HPV types in cases of vulvar cancer in Africa and the World ... 45
34 Comparison of the ten most frequent HPV types in VIN 2/3 cases in Africa and the World ... 45
35 Comparison of the ten most frequent HPV types in cases of vaginal cancer in Africa and the World ... 47
36 Comparison of the ten most frequent HPV types in VaIn 2/3 cases in Africa and the World ... 47
37 Comparison of the ten most frequent HPV types in cases of penile cancer in Africa and the World ... 49
38 Comparison of the ten most frequent HPV types in PeIn 2/3 cases in Africa and the World ... 49
39 Estimated coverage of cervical cancer screening in Ethiopia, by age and study ... 58
40 Reported HPV vaccination coverage in females by birth cohort in National HPV Immunization programme in Ethiopia ... 59
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key Statistics</td>
<td>iii</td>
</tr>
<tr>
<td>2</td>
<td>Sociodemographic indicators in Ethiopia</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Cervical cancer incidence in Ethiopia (estimates for 2018)</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Cervical cancer incidence in Ethiopia by cancer registry</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Age-standardised incidence rates of cervical cancer in Ethiopia by histological type and cancer registry</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Cervical cancer mortality in Ethiopia (estimates for 2018)</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Premature deaths and disability from cervical cancer in Ethiopia, Eastern Africa and the rest of the world (estimates for 2008)</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Anal cancer incidence in Ethiopia by cancer registry and sex</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Vulvar cancer incidence in Ethiopia by cancer registry</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Vaginal cancer incidence in Ethiopia by cancer registry</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Penile cancer incidence in Ethiopia by cancer registry</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Incidence and mortality of cancer of the oropharynx in Ethiopia, Eastern Africa and the rest of the world by sex (estimates for 2018). Includes ICD-10 codes: C09-10</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>Incidence of oropharyngeal cancer in Ethiopia by cancer registry and sex</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>Prevalence of HPV16 and HPV18 by cytology in Ethiopia</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>Type-specific HPV prevalence in women with normal cervical cytology, precancerous cervical lesions and invasive cervical cancer in Ethiopia</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Type-specific HPV prevalence among invasive cervical cancer cases in Ethiopia by histology</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>Studies on HPV prevalence among HIV women with normal cytology in Ethiopia</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>Studies on HPV prevalence among anal cancer cases in Ethiopia (male and female)</td>
<td>42</td>
</tr>
<tr>
<td>19</td>
<td>Studies on HPV prevalence among cases of AIN2/3 in Ethiopia</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>Studies on HPV prevalence among vulvar cancer cases in Ethiopia</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>Studies on HPV prevalence among VIN 2/3 cases in Ethiopia</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>Studies on HPV prevalence among vaginal cancer cases in Ethiopia</td>
<td>46</td>
</tr>
<tr>
<td>23</td>
<td>Studies on HPV prevalence among VaIN 2/3 cases in Ethiopia</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>Studies on HPV prevalence among penile cancer cases in Ethiopia</td>
<td>48</td>
</tr>
<tr>
<td>25</td>
<td>Studies on HPV prevalence among PeIN 2/3 cases in Ethiopia</td>
<td>48</td>
</tr>
<tr>
<td>26</td>
<td>Studies on HPV prevalence among men in Ethiopia</td>
<td>50</td>
</tr>
<tr>
<td>27</td>
<td>Studies on HPV prevalence among men from special subgroups in Ethiopia</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>Studies on oral HPV prevalence among healthy in Ethiopia</td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td>Studies on HPV prevalence among cases of oral cavity cancer in Ethiopia</td>
<td>51</td>
</tr>
<tr>
<td>30</td>
<td>Studies on HPV prevalence among cases of oropharyngeal cancer in Ethiopia</td>
<td>52</td>
</tr>
<tr>
<td>31</td>
<td>Studies on HPV prevalence among cases of hypopharyngeal or laryngeal cancer in Ethiopia</td>
<td>52</td>
</tr>
<tr>
<td>32</td>
<td>Factors contributing to cervical carcinogenesis (cofactors) in Ethiopia</td>
<td>53</td>
</tr>
<tr>
<td>33</td>
<td>Percentage of 15-year-olds who have had sexual intercourse in Ethiopia</td>
<td>55</td>
</tr>
<tr>
<td>34</td>
<td>Median age at first sex in Ethiopia</td>
<td>55</td>
</tr>
<tr>
<td>35</td>
<td>Marriage patterns in Ethiopia</td>
<td>55</td>
</tr>
<tr>
<td>36</td>
<td>Main characteristics of cervical cancer screening in Ethiopia</td>
<td>57</td>
</tr>
<tr>
<td>37</td>
<td>Estimated coverage of cervical cancer screening in Ethiopia</td>
<td>58</td>
</tr>
<tr>
<td>38</td>
<td>Estimated coverage of cervical cancer screening in Ethiopia, by region</td>
<td>58</td>
</tr>
<tr>
<td>39</td>
<td>National HPV Immunization programme in Ethiopia</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>Prevalence of male circumcision in Ethiopia</td>
<td>59</td>
</tr>
<tr>
<td>41</td>
<td>Prevalence of condom use in Ethiopia</td>
<td>60</td>
</tr>
<tr>
<td>42</td>
<td>General immunization schedule in Ethiopia</td>
<td>61</td>
</tr>
<tr>
<td>43</td>
<td>Immunization coverage estimates in Ethiopia</td>
<td>61</td>
</tr>
<tr>
<td>44</td>
<td>Glossary</td>
<td>62</td>
</tr>
</tbody>
</table>
1 Introduction

The HPV Information Centre aims to compile and centralise updated data and statistics on human papillomavirus (HPV) and related cancers. This report aims to summarise the data available to fully evaluate the burden of disease in Ethiopia and to facilitate stakeholders and relevant bodies of decision makers to formulate recommendations on cervical cancer prevention. Data include relevant cancer statistic estimates, epidemiological determinants of cervical cancer such as demographics, socioeconomic factors, risk factors, burden of HPV infection, screening and immunisation. The report is structured into the following sections:

Section 2, Demographic and socioeconomic factors. This section summarises the socio-demo-
graphic profile of country. For analytical purposes, Ethiopia is classified in the geographical region of Eastern Africa (Figure 1, lighter blue), which is composed of the following countries: Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Mozambique, Mauritius, Malawi, Mayotte, Reunion, Rwanda, Somalia, South Sudan, Seychelles, Tanzania, Uganda, Zambia, Zimbabwe. Throughout the report, Ethiopia estimates will be complemented with corresponding regional estimates.

Section 3, Burden of HPV related cancers. This section describes the current burden of invasive cervical cancer and other HPV-related cancers in Ethiopia and the Eastern Africa region with estimates of prevalence, incidence, and mortality rates.

Section 4, HPV related statistics. This section reports on prevalence of HPV and HPV type-specific distribution in Ethiopia, in women with normal cytology, precancerous lesions and invasive cervical cancer. In addition, the burden of HPV in other anogenital cancers (anus, vulva, vagina, and penis) and men are presented.

Section 5, Factors contributing to cervical cancer. This section describes factors that can modify the natural history of HPV and cervical carcinogenesis such as smoking, parity, oral contraceptive use, and co-infection with HIV.

Section 6, Sexual and reproductive health behaviour indicators. This section presents sexual and reproductive behaviour indicators that may be used as proxy measures of risk for HPV infection and anogenital cancers.

Section 7, HPV preventive strategies. This section presents preventive strategies that include basic characteristics and performance of cervical cancer screening status, status of HPV vaccine licensure introduction, and recommendations in national immunisation programmes.

Section 8, Protective factors for cervical cancer. This section presents the prevalence of male circumcision and condom use.

Section 9, Indicators related to immunisation practices other than HPV vaccines. This section presents data on immunisation coverage and practices for selected vaccines. This information will be relevant for assessing the country's capacity to introduce and implement the new vaccines. The data are periodically updated and posted on the WHO immunisation surveillance, assessment and monitoring website at http://www.who.int/immunization_monitoring/en/.

ICO/IARC HPV Information Centre
2 Demographic and socioeconomic factors

Figure 2: Population pyramid of Ethiopia for 2017

![Population Pyramid of Ethiopia for 2017](image)

Data accessed on 27 Mar 2017.
Please refer to original source for methods of estimation.
Year of estimate: 2017;
Data sources:

Figure 3: Population trends in four selected age groups in Ethiopia

![Population Trends in Ethiopia](image)

Data accessed on 27 Mar 2017.
Please refer to original source for methods of estimation.
Year of estimate: 2017;
Data sources:
Table 2: Sociodemographic indicators in Ethiopia

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in thousands(^1)(^±)</td>
<td>52,080.7</td>
<td>52,264.2</td>
<td>104,344.9</td>
</tr>
<tr>
<td>Population growth rate (%(^1)(^±))</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>Median age of the population (in years)(^1)(^x)</td>
<td>-</td>
<td>-</td>
<td>18.6</td>
</tr>
<tr>
<td>Population living in urban areas (%(^2)(^±))</td>
<td>-</td>
<td>-</td>
<td>19.5</td>
</tr>
<tr>
<td>Crude birth rate (births per 1,000)(^1)(^±)</td>
<td>-</td>
<td>-</td>
<td>33.2</td>
</tr>
<tr>
<td>Crude death rate (deaths per 1,000)(^1)(^±)</td>
<td>-</td>
<td>-</td>
<td>7.8</td>
</tr>
<tr>
<td>Life expectancy at birth (in years)(^3)(^a)(^b)(^h)</td>
<td>62.8</td>
<td>66.8</td>
<td>64.8</td>
</tr>
<tr>
<td>Adult mortality rate (probability of dying between 15 and 60 years old per 1,000)(^3)(^a)(^b)(^x)</td>
<td>253</td>
<td>197</td>
<td>225</td>
</tr>
<tr>
<td>Maternal mortality ratio (per 100,000 live births)(^3)(^c)(^x)</td>
<td>-</td>
<td>-</td>
<td>353</td>
</tr>
<tr>
<td>Under age five mortality rate (per 1,000 live births)(^3)(^d)(^x)</td>
<td>-</td>
<td>-</td>
<td>59.2</td>
</tr>
<tr>
<td>Density of physicians (per 1,000 population)(^3)(^e)(^x)</td>
<td>-</td>
<td>-</td>
<td>0.025</td>
</tr>
<tr>
<td>Gross national income per capita (PPP current international $)(^6)(^f)(^x)</td>
<td>-</td>
<td>-</td>
<td>1620</td>
</tr>
<tr>
<td>Adult literacy rate (%) (aged 15 and older)(^7)(^g)(^x)</td>
<td>57.3</td>
<td>41</td>
<td>49</td>
</tr>
<tr>
<td>Youth literacy rate (%) (aged 15-24 years)(^7)(^g)(^x)</td>
<td>71.1</td>
<td>67.8</td>
<td>69.5</td>
</tr>
<tr>
<td>Net primary school enrollment ratio(^7)(^h)</td>
<td>88.7</td>
<td>82.9</td>
<td>85.8</td>
</tr>
<tr>
<td>Net secondary school enrollment ratio(^7)(^g)(^x)</td>
<td>18.4</td>
<td>11.4</td>
<td>15</td>
</tr>
</tbody>
</table>

Data accessed on 27 Mar 2017.

Please refer to original source for methods of estimation.

3 Burden of HPV related cancers

HPV is the cause of almost all cervical cancer cases and is responsible for an important fraction of other anogenital and head and neck cancer. Here, we present the most recent estimations on the burden of HPV-associated cancer.

Figure 4: HPV-related cancer incidence in Ethiopia (estimates for 2012)

Data accessed on 08 May 2017.

a Other anogenital cancer cases (vulvar, vaginal, anal, and penile).
b Head and neck cancer cases (oropharynx, oral cavity and larynx).

ASR: Age-standardized rate, rates per 100,000 per year.
Please refer to original source for methods.
GLOBOCAN quality index for availability of incidence data: Regional data (rates).
GLOBOCAN quality index of methods for calculating incidence: Methods to estimate the sex- and age-specific incidence rates of cancer for a specific country: One cancer registry covering part of a country is used as representative of the country profile.

3.1 Cervical cancer

This section describes the current burden of invasive cervical cancer in Ethiopia and in comparison to geographic region, including estimates of the annual number of new cases, deaths, incidence, and mortality rates.

3.1.1 Cervical cancer incidence in Ethiopia

KEY STATS.

About 6,284 new cervical cancer cases are diagnosed annually in Ethiopia (estimates for 2018).

Cervical cancer ranks* as the 2nd leading cause of female cancer in Ethiopia.

Cervical cancer is the 2nd most common female cancer in women aged 15 to 44 years in Ethiopia.
Ranking of cervical cancer incidence to other cancers among all women according to highest incidence rates (ranking 1st) excluding non-melanoma skin cancer and considering separated colon, rectum and anus. Ranking is based on crude incidence rates (actual number of cervical cancer cases). Ranking using age-standardized rate (ASR) may differ.

Table 3: Cervical cancer incidence in Ethiopia (estimates for 2018)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Ethiopia</th>
<th>Eastern Africa</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual number of new cancer cases</td>
<td>6,294</td>
<td>52,633</td>
<td>569,847</td>
</tr>
<tr>
<td>Crude incidence rate</td>
<td>11.7</td>
<td>24.1</td>
<td>15.1</td>
</tr>
<tr>
<td>Age-standardized incidence rate</td>
<td>18.9</td>
<td>40.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Cumulative risk (%) at 75 years old</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.

Cumulative risk (incidence) is the probability or risk of individuals getting from the disease during ages 0-74 years. For cancer, it is expressed as the % of new born children who would be expected to develop from a particular cancer before the age of 75 if they had the rates of cancer observed in the period in the absence of competing causes.

Data sources:

Table 4: Cervical cancer incidence in Ethiopia by cancer registry

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>N cases<sup>a</sup></th>
<th>Crude rate<sup>b</sup></th>
<th>ASR<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.
ASR: Age-standardized rate. Standardized rates have been estimated using the direct method and the World population as the reference.

^aAccumulated number of cases during the period in the population covered by the corresponding registry.

^bRates per 100,000 women per year.

Figure 5: Comparison of cervical cancer incidence to other cancers in women of all ages in Ethiopia (estimates for 2018)

ICO/IARC HPV Information Centre
Figure 6: Comparison of age-specific cervical cancer to age-specific incidence of other cancers among women 15-44 years of age in Ethiopia (estimates for 2018)

Data accessed on 07 Oct 2018.
Non-melanoma skin cancer is not included.
Rates per 100,000 women per year.
Data sources:
Figure 7: Annual number of cases and age-specific incidence rates of cervical cancer in Ethiopia (estimates for 2018)

- 15-19 yrs: 0 cases. 20-24 yrs: 40 cases. 25-29 yrs: 166 cases. 30-34 yrs: 375 cases. 35-39 yrs: 576 cases.
- Data accessed on 05 Oct 2018.
- Rates per 100,000 women per year.
- Data sources:
3.1.2 Cervical cancer incidence by histology in Ethiopia

Table 5: Age-standardised incidence rates of cervical cancer in Ethiopia by histological type and cancer registry

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>Carcinoma</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No data available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.
Adeno: adenocarcinoma; Other: Other carcinoma; Squamous: Squamous cell carcinoma; Unspec: Unspecified carcinoma;
Rates per 100,000 women per year.
Standardized rates have been estimated using the direct method and the World population as the reference.
Figure 8: Time trends in cervical cancer incidence in Ethiopia (cancer registry data)

Data accessed on 27 Apr 2015.

ICO/IARC HPV Information Centre
3.1.3 Cervical cancer incidence in Ethiopia across Eastern Africa

Figure 9: Age-standardised incidence rates of cervical cancer of Ethiopia (estimates for 2018)

* No rates are available.

Data accessed on 05 Oct 2018.

Data sources:
Figure 10: Annual number of new cases of cervical cancer by age group in Ethiopia (estimates for 2018)

*0 cases for Ethiopia and 109 cases for Eastern Africa in the 15-19 age group.

Data accessed on 05 Oct 2018.

Data sources:
3.1.4 Cervical cancer mortality in Ethiopia

KEY STATS.

About 4,884 cervical cancer deaths occur annually in Ethiopia (estimates for 2018).

Cervical cancer ranks* as the 2nd leading cause of female cancer deaths in Ethiopia.

Cervical cancer is the 2nd leading cause of cancer deaths in women aged 15 to 44 years in Ethiopia.

* Ranking of cervical cancer incidence to other cancers among all women according to highest incidence rates (ranking 1st) excluding non-melanoma skin cancer and considering separated colon, rectum and anus. Ranking is based on crude incidence rates (actual number of cervical cancer cases). Ranking using age-standardized rate (ASR) may differ.

Table 6: Cervical cancer mortality in Ethiopia (estimates for 2018)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Ethiopia</th>
<th>Eastern Africa</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual number of deaths</td>
<td>4,884</td>
<td>37,017</td>
<td>311,365</td>
</tr>
<tr>
<td>Crude mortality ratea</td>
<td>9.1</td>
<td>16.9</td>
<td>8.2</td>
</tr>
<tr>
<td>Age-standardized mortality ratea</td>
<td>15.3</td>
<td>30.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Cumulative risk (%) at 75 years oldb</td>
<td>1.8</td>
<td>3.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.

For more detailed methods of estimation please refer to http://gco.iarc.fr/today/data-source-methods

a Rates per 100,000 women per year.

b Cumulative risk (mortality) is the probability or risk of individuals dying from the disease during ages 0-74 years. For cancer, it is expressed as the % of new born children who would be expected to die from a particular cancer before the age of 75 if they had the rates of cancer observed in the period in the absence of competing causes.

Data sources:
Figure 11: Comparison of cervical cancer mortality to other cancers in women of all ages in Ethiopia (estimates for 2018)

Data accessed on 07 Oct 2018.

Non-melanoma skin cancer is not included.
* Rates per 100,000 women per year.

Data sources:
Figure 12: Comparison of age-specific mortality rates of cervical cancer to other cancers among women 15-44 years of age in Ethiopia (estimates for 2018)

Data accessed on 07 Oct 2018.
Non-melanoma skin cancer is not included.
*Rates per 100,000 women per year.
Data sources:
Figure 13: Annual number of deaths and age-specific mortality rates of cervical cancer in Ethiopia (estimates for 2018)

* 15-19 yrs: 1 cases. 20-24 yrs: 17 cases. 25-29 yrs: 52 cases. 30-34 yrs: 188 cases. 35-39 yrs: 322 cases.

Data accessed on 05 Oct 2018.

Rates per 100,000 women per year.

Data sources:
3.1.5 Cervical cancer mortality in Ethiopia across Eastern Africa

Figure 14: Comparison of age-standardised cervical cancer mortality rates in Ethiopia and countries within the region (estimates for 2018)

* No rates are available.

Data accessed on 05 Oct 2018.

Rates per 100,000 women per year.

Data sources:
Figure 15: Annual deaths number of cervical cancer by age group in Ethiopia (estimates for 2018)

*1 cases for Ethiopia and 9 cases for Eastern Africa in the 15-19 age group. 17 cases for Ethiopia and 186 cases for Eastern Africa in the 20-24 age group.

Data accessed on 05 Oct 2018.

Data sources:
3.1.6 Cervical cancer incidence and mortality comparison, Premature deaths and disability in Ethiopia

Figure 16: Comparison of age-specific cervical cancer incidence and mortality rates in Ethiopia (estimates for 2018)

Data accessed on 05 Oct 2018.
Rates per 100,000 women per year.
Data source:

Table 7: Premature deaths and disability from cervical cancer in Ethiopia, Eastern Africa and the rest of the world (estimates for 2008)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Ethiopia</th>
<th>Eastern Africa</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated disability-adjusted life years (DALYs)</td>
<td>98,940</td>
<td>677,131</td>
<td>8,738,004</td>
</tr>
<tr>
<td>Years of life lost (YLLs)</td>
<td>92,702</td>
<td>634,208</td>
<td>7,788,282</td>
</tr>
<tr>
<td>Years lived with disability (YLDs)</td>
<td>6,238</td>
<td>42,922</td>
<td>949,722</td>
</tr>
</tbody>
</table>

Data accessed on 04 Nov 2013.
Data source:
Figure 17: Comparison of annual premature deaths and disability from cervical cancer in Ethiopia to other cancers among women (estimates for 2008)

Data accessed on 04 Nov 2013.
CNS: Central Nervous System; YLDs: years lived with disability; YLLs: Years of life lost;
Data sources:
3.2 Anogenital cancers other than the cervix

Data on HPV role in anogenital cancers other than cervix are limited, but there is an increasing body of evidence strongly linking HPV DNA with cancers of anus, vulva, vagina, and penis. Although these cancers are much less frequent compared to cervical cancer, their association with HPV make them potentially preventable and subject to similar preventative strategies as those for cervical cancer. (Vaccine 2006, Vol. 24, Suppl 3; Vaccine 2008, Vol. 26, Suppl 10; Vaccine 2012, Vol. 30, Suppl 5; IARC Monographs 2007, Vol. 90).

3.2.1 Anal cancer

Anal cancer is rare in the general population with an average worldwide incidence of 1 per 100,000, but is reported to be increasing in more developed regions. Globally, there are an estimated 27,000 new cases every year (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Women have higher incidences of anal cancer than men. Incidence is particularly high among populations of men who have sex with men (MSM), women with history of cervical or vulvar cancer, and immunosuppressed populations, including those who are HIV-infected and patients with a history of organ transplantation. These cancers are predominantly squamous cell carcinoma, adenocarcinomas, or basaloid and cloacogenic carcinomas.

Table 8: Anal cancer incidence in Ethiopia by cancer registry and sex

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>MALE</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N cases a</td>
<td>Crude rate b</td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.

ASR: Age-standardized rate. Standardized rates have been estimated using the direct method and the World population as the reference;

Please refer to original source (available at http://ci5.iarc.fr/CI5-XI/Default.aspx)

a Accumulated number of cases during the period in the population covered by the corresponding registry.
b Rates per 100,000 men per year.
c Rates per 10,000 women per year.
Figure 18: Time trends in anal cancer incidence in Ethiopia (cancer registry data)

Data accessed on 27 Apr 2015.

Data sources:
3.2.2 Vulvar cancer

Cancer of the vulva is rare among women worldwide, with an estimated 27,000 new cases in 2008, representing 4% of all gynaecologic cancers (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Worldwide, about 60% of all vulvar cancer cases occur in more developed countries. Vulvar cancer has two distinct histological patterns with two different risk factor profiles: (1) basaloid/warty types (2) keratinising types. Basaloid/warty lesions are more common in young women, are very often associated with HPV DNA detection (75-100%), and have a similar risk factor profile as cervical cancer. Keratinising vulvar carcinomas represent the majority of the vulvar lesions (>60%), they occur more often in older women and are more rarely associated with HPV (IARC Monograph Vol 100B).

Table 9: Vulvar cancer incidence in Ethiopia by cancer registry

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>N cases<sup>a</sup></th>
<th>Crude rate<sup>b</sup></th>
<th>ASR<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.
ASR: Age-standardized rate. Standardized rates have been estimated using the direct method and the World population as the reference;
Please refer to original source (available at http://ci5.iarc.fr/CI5- XI/Default.aspx);
^aAccumulated number of cases during the period in the population covered by the corresponding registry.
^bRates per 100,000 women per year.

Figure 19: Time trends in vulvar cancer incidence in Ethiopia (cancer registry data)

Data accessed on 27 Apr 2015.
Data sources:
3.2.3 Vaginal cancer

Cancer of the vagina is a rare cancer, with an estimated 13,000 new cases in 2008, representing 2% of all gynaecologic cancers (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Similar to cervical cancer, the majority of vaginal cancer cases (68%) occur in less developed countries. Most vaginal cancers are squamous cell carcinoma (90%) generally attributable to HPV, followed by clear cell adenocarcinomas and melanoma. Vaginal cancers are primarily reported in developed countries. Metastatic cervical cancer can be misclassified as cancer of the vagina. Invasive vaginal cancer is diagnosed primarily in old women (≥ 65 years) and the diagnosis is rare in women under 45 years whereas the peak incidence of carcinoma in situ is observed between ages 55 and 70 (Vaccine 2008, Vol. 26, Suppl 10).

Table 10: Vaginal cancer incidence in Ethiopia by cancer registry

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>N casesa</th>
<th>Crude rateb</th>
<th>ASRb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data accessed on 05 Oct 2018.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ASR: Age-standardized rate. Standardized rates have been estimated using the direct method and the World population as the reference;

Please refer to original source (available at http://ci5.iarc.fr/C5XI/Default.aspx);

a: Accumulated number of cases during the period in the population covered by the corresponding registry.

b: Rates per 100,000 women per year.

Figure 20: Time trends in vaginal cancer incidence in Ethiopia (cancer registry data)

Data accessed on 27 Apr 2015.

Data sources:

3.2.4 Penile cancer

The annual burden of penile cancer has been estimated to be 22,000 cases worldwide with incidence rates strongly correlating with those of cervical cancer (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Penile cancer is rare and most commonly affects men aged 50-70 years. Incidence rates are higher in less developed countries than in more developed countries, accounting for up to 10% of male cancers in some parts of Africa, South America and Asia. Precursor cancerous penile lesions (PeIN) are rare.

Cancers of the penis are primarily of squamous cell carcinomas (SCC) (95%) and the most common penile SCC histologic sub-types are keratinising (49%), mixed warty-basaloid (17%), verrucous (8%) warty (6%), and basaloid (4%). HPV is most commonly detected in basaloid and warty tumours but is less common in keratinising and verrucous tumours. Approximately 60-100% of PeIN lesions are HPV DNA positive.

Table 11: Penile cancer incidence in Ethiopia by cancer registry

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>N casesa</th>
<th>Crude rateb</th>
<th>ASRb</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.

ASR: Age-standardized rate. Standardized rates have been estimated using the direct method and the World population as the reference;
Please refer to original source (available at http://ci5.iarc.fr/CI5-XII/default.aspx)

a Accumulated number of cases during the period in the population covered by the corresponding registry.
b Rates per 100,000 men per year.

Figure 21: Time trends in penile cancer incidence in Ethiopia (cancer registry data)

Data accessed on 27 Apr 2015.

Data sources:
3.3 Head and neck cancers

The majority of head and neck cancers are associated with high tobacco and alcohol consumption. However, increasing trends in the incidence at specific sites suggest that other aetiological factors are involved, and infection by certain high-risk types of HPV (i.e. HPV16) have been reported to be associated with head and neck cancers, in particular with oropharyngeal cancer. Current evidence suggests that HPV16 is associated with tonsil cancer (including Waldeyer ring cancer), base of tongue cancer and other oropharyngeal cancer sites. Associations with other head and neck cancer sites such as oral cancer are neither strong nor consistent when compared to molecular-epidemiological data on HPV and oropharyngeal cancer. Association with laryngeal cancer is still unclear (IARC Monograph Vol 100B).

3.3.1 Oropharyngeal cancer

Table 12: Incidence and mortality of cancer of the oropharynx in Ethiopia, Eastern Africa and the rest of the world by sex (estimates for 2018). Includes ICD-10 codes: C09-10

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethiopia</td>
<td>Eastern Africa</td>
</tr>
<tr>
<td>INCIDENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual number of new cancer cases</td>
<td>34</td>
<td>435</td>
</tr>
<tr>
<td>Crude incidence rate</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Age-standardized incidence rate</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Cumulative risk (%) at 75 years old</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MORTALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual number of deaths</td>
<td>32</td>
<td>355</td>
</tr>
<tr>
<td>Crude mortality rate</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Age-standardized mortality rate</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Cumulative risk (%) at 75 years old</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data accessed on 05 Oct 2018.

*Male: Rates per 100,000 men per year. Female: Rates per 100,000 women per year.

Cumulative risk (incidence) is the probability or risk of individuals getting from the disease during ages 0-74 years. For cancer, it is expressed as the % of new born children who would be expected to develop from a particular cancer before the age of 75 if they had the rates of cancer observed in the period in the absence of competing causes.

Cumulative risk (mortality) is the probability or risk of individuals dying from the disease during ages 0-74 years. For cancer, it is expressed as the % of new born children who would be expected to die from a particular cancer before the age of 75 if they had the rates of cancer observed in the period in the absence of competing causes.

Data sources:
Figure 22: Comparison of incidence and mortality rates of the oropharynx by age group and sex in Ethiopia (estimates for 2018). Includes ICD-10 codes: C09-10

Data accessed on 05 Oct 2018.

Male: Rates per 100,000 men per year. Female: Rates per 100,000 women per year.

Data sources:
Table 13: Incidence of oropharyngeal cancer in Ethiopia by cancer registry and sex

<table>
<thead>
<tr>
<th>Cancer registry</th>
<th>Period</th>
<th>MALE</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N cases</td>
<td>Crude rate</td>
</tr>
<tr>
<td>Tongue (ICD-10 code: C01-02)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tonsillar cancer (ICD-10 code: C09)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cancer of the oropharynx (excludes tonsil) (ICD-10 code: C10)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 15 Oct 2018.

ASR: Age-standardised rate. Standardised rates have been estimated using the direct method and the World population as the reference.

a Accumulated number of cases during the period in the population covered by the corresponding registry.

b Male: Rates per 100,000 men per year. Female: Rates per 100,000 women per year.

Please refer to original source (available at http://ci5.iarc.fr/CI5-XI/default.aspx)
4 HPV related statistics

HPV infection is commonly found in the anogenital tract of men and women with and without clinical lesions. The aetiological role of HPV infection among women with cervical cancer is well-established, and there is growing evidence of its central role in other anogenital sites. HPV is also responsible for other diseases such as recurrent juvenile respiratory papillomatosis and genital warts, both mainly caused by HPV types 6 and 11 (Lacey CJ, Vaccine 2006; 24(S3):35). For this section, the methodologies used to compile the information on HPV burden are derived from systematic reviews and meta-analyses of the literature. Due to the limitations of HPV DNA detection methods and study designs used, these data should be interpreted with caution and used only as a guide to assess the burden of HPV infection within the population. (Vaccine 2006, Vol. 24, Suppl 3; Vaccine 2008, Vol. 26, Suppl 10; Vaccine 2012, Vol. 30, Suppl 5; IARC Monographs 2007, Vol. 90).

4.1 HPV burden in women with normal cervical cytology, cervical precancerous lesions or invasive cervical cancer

The statistics shown in this section focus on HPV infection in the cervix uteri. HPV cervical infection results in cervical morphological lesions ranging from normalcy (cytologically normal women) to different stages of precancerous lesions (CIN-1, CIN-2, CIN-3/CIS) and invasive cervical cancer. HPV infection is measured by HPV DNA detection in cervical cells (fresh tissue, paraffin embedded or exfoliated cells).

The prevalence of HPV increases with lesion severity. HPV causes virtually 100% of cervical cancer cases, and an underestimation of HPV prevalence in cervical cancer is most likely due to the limitations of study methodologies. Worldwide, HPV16 and 18 (the two vaccine-preventable types) contribute to over 70% of all cervical cancer cases, between 41% and 67% of high-grade cervical lesions and 16-32% of low-grade cervical lesions. After HPV16/18, the six most common HPV types are the same in all world regions, namely 31, 33, 35, 45, 52 and 58; these account for an additional 20% of cervical cancers worldwide (Clifford G, Vaccine 2006;24(S3):26).

Methods: Prevalence and type distribution of human papillomavirus in cervical carcinoma, low-grade cervical lesions, high-grade cervical lesions and normal cytology: systematic review and meta-analysis

A systematic review of the literature was conducted regarding the worldwide HPV-prevalence and type distribution for cervical carcinoma, low-grade cervical lesions, high-grade cervical lesions and normal cytology from 1990 to 'data as of' indicated in each section. The search terms for the review were 'HPV' AND cerv* using Pubmed. There were no limits in publication language. References cited in selected articles were also investigated. Inclusion criteria were: HPV DNA detection by means of PCR or HC2, a minimum of 20 cases for cervical carcinoma, 20 cases for low-grade cervical lesions, 20 cases for high-grade cervical lesions and 100 cases for normal cytology and a detailed description of HPV DNA detection and genotyping techniques used. The number of cases tested and HPV positive extracted for each study were pooled to estimate the prevalence of HPV DNA and the HPV type distribution globally and by geographical region. Binomial 95% confidence intervals were calculated for each HPV prevalence. For more details refer to the methods document.
4.1.1 HPV prevalence in women with normal cervical cytology

Figure 23: Crude age-specific HPV prevalence (%) and 95% confidence interval in women with normal cervical cytology in Ethiopia

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

Data sources:
Based on systematic reviews and meta-analysis performed by ICO. The ICO HPV Information Centre has updated data until June 2014. Reference publications: 1) Bruni L, J Infect Dis 2010; 202: 1789. 2) De Sanjosé S, Lancet Infect Dis 2007; 7: 453

Figure 24: HPV prevalence among women with normal cervical cytology in Ethiopia, by study

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; N: number of women tested.
The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Women from the general population, including some with cytological cervical abnormalities

Data sources:
Based on systematic reviews and meta-analysis performed by ICO. The ICO HPV Information Centre has updated data until June 2014. Reference publications: 1) Bruni L, J Infect Dis 2010; 202: 1789. 2) De Sanjosé S, Lancet Infect Dis 2007; 7: 453

4.1.2 HPV type distribution among women with normal cervical cytology, precancerous cervical lesions and cervical cancer

Table 14: Prevalence of HPV16 and HPV18 by cytology in Ethiopia

<table>
<thead>
<tr>
<th>Cytology Type</th>
<th>No. tested</th>
<th>HPV 16/18 Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Normal cytology</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Low-grade lesions</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>High-grade lesions</td>
<td></td>
<td>11 63.6 (35.4-84.8)</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td></td>
<td>291 96.6 (93.8-98.1)</td>
</tr>
</tbody>
</table>

95% CI: 95% Confidence Interval; High-grade lesions: CIN-2, CIN-3, CIN-3 or HSIL; Low-grade lesions: LSIL or CIN-1; The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Data sources:
1 Based on systematic reviews and meta-analysis performed by ICO. The ICO HPV Information Centre has updated data until June 2014.
2 Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015.
4 Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015.
5 Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015.

Figure 25: HPV 16 prevalence among women with normal cervical cytology in Ethiopia, by study

<table>
<thead>
<tr>
<th>Study</th>
<th>Age N</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; N: number of women tested; The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Data sources:
Based on systematic reviews and meta-analysis performed by ICO. The ICO HPV Information Centre has updated data until June 2014.

Figure 26: HPV 16 prevalence among women with low-grade cervical lesions in Ethiopia, by study

<table>
<thead>
<tr>
<th>Study</th>
<th>N % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abate 2013</td>
<td>11 100.0 (74.1–100.0)</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; Low-grade lesions: LSIL or CIN-1; N: number of women tested; The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Data sources:
Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015.

Figure 27: HPV 16 prevalence among women with high-grade cervical lesions in Ethiopia, by study

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abate 2013</td>
<td>11</td>
<td>54.5 (28.0−78.7)</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; High-grade lesions: CIN-2, CIN-3, CIS or HSIL; N: number of women tested; The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Data sources:
Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015.

Figure 28: HPV 16 prevalence among women with invasive cervical cancer in Ethiopia, by study

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanta 2005</td>
<td>163</td>
<td>71.8 (64.4−78.1)</td>
</tr>
<tr>
<td>Abate 2013</td>
<td>128</td>
<td>86.7 (79.8−91.5)</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; N: number of women tested; The samples for HPV testing come from cervical specimens (fresh/fixed biopsies or exfoliated cells).

Data sources:
Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2014.
Figure 29: Comparison of the ten most frequent HPV oncogenic types in Ethiopia among women with and without cervical lesions

High-grade lesions: CIN-2, CIN-3, CIS or HSIL; Low-grade lesions: LSIL or CIN-1.

The samples for HPV testing come from cervical specimens (fresh / fixed biopsies or exfoliated cells).

Data sources:

(Continued on next page)
Figure 30: Comparison of the ten most frequent HPV oncogenic types in Ethiopia among women with invasive cervical cancer by histology.

*No data available. No more types than shown were tested or were positive.

Data updated on 19 May 2017 (data as of 30 Jun 2015).

The samples for HPV testing come from cervical specimens (fresh / fixed biopsies or exfoliated cells). The ranking of the ten most frequent HPV types may present less than ten types because only a limited number of types were tested or were HPV-positive.

Data sources:
(Continued on next page)
Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2014.

Table 15: Type-specific HPV prevalence in women with normal cervical cytology, precancerous cervical lesions and invasive cervical cancer in Ethiopia

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Normal cytology</th>
<th>Low-grade lesions</th>
<th>High-grade lesions</th>
<th>Cervical cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. tested</td>
<td>HPV Prev % (95% CI)</td>
<td>No. tested</td>
<td>HPV Prev % (95% CI)</td>
</tr>
<tr>
<td>ONCOGENIC HPV TYPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk HPV types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>- -</td>
<td>11 100.0 (74.1-100.0)</td>
<td>11 54.5 (28.0-78.7)</td>
<td>291 78.4 (73.3-82.7)</td>
</tr>
<tr>
<td>18</td>
<td>- -</td>
<td>11 27.3 (9.7-56.6)</td>
<td>11 9.1 (1.6-37.7)</td>
<td>291 18.2 (14.2-23.1)</td>
</tr>
<tr>
<td>31</td>
<td>- -</td>
<td>11 18.2 (5.1-47.7)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>291 2.7 (1.4-5.3)</td>
</tr>
<tr>
<td>33</td>
<td>- -</td>
<td>11 18.2 (5.1-47.7)</td>
<td>11 9.1 (1.6-37.7)</td>
<td>128 6.3 (3.2-11.8)</td>
</tr>
<tr>
<td>35</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>39</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>45</td>
<td>- -</td>
<td>11 9.1 (1.6-37.7)</td>
<td>11 9.1 (1.6-37.7)</td>
<td>291 6.5 (4.2-10.0)</td>
</tr>
<tr>
<td>51</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>52</td>
<td>- -</td>
<td>11 18.2 (5.1-47.7)</td>
<td>11 45.5 (21.3-72.0)</td>
<td>291 10.0 (7.0-13.9)</td>
</tr>
<tr>
<td>56</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>58</td>
<td>- -</td>
<td>11 27.3 (9.7-56.6)</td>
<td>11 18.2 (5.1-47.7)</td>
<td>291 9.6 (6.7-13.6)</td>
</tr>
<tr>
<td>59</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>Probable/possible carcinogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>30</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>34</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>53</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>67</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>68</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>69</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>70</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>73</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>82</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>85</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>97</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>NON-ONCOGENIC HPV TYPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>291 4.1 (2.4-7.1)</td>
</tr>
<tr>
<td>11</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>291 0.0 (0.0-1.3)</td>
</tr>
<tr>
<td>32</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>40</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>42</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>43</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>44</td>
<td>- -</td>
<td>11 9.1 (1.6-37.7)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>54</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>55</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>57</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>61</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>62</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>64</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>71</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>72</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>74</td>
<td>- -</td>
<td>11 0.0 (0.0-25.9)</td>
<td>11 0.0 (0.0-25.9)</td>
<td>128 0.8 (0.1-4.3)</td>
</tr>
<tr>
<td>81</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>83</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>84</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>86</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>87</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>89</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>90</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>91</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

95% CI: 95% Confidence Interval; High-grade lesions: CIN-2, CIN-3, CIS or HSIL; Low-grade lesions: LSIL or CIN-1;
The samples for HPV testing come from cervical specimens (fresh / fixed biopsies or exfoliated cells).
Data sources:
1Based on systematic reviews and meta-analysis performed by ICO. The ICO HPV Information Centre has updated data until June 2014. Reference publications: 1) Bruni L, J Infect Dis 2010; 202: 1789. 2) De Sanjosé S, Lancet Infect Dis 2007; 7: 453
2Based on meta-analysis performed by IARC's Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2015. Reference publications: 1) Guan P, Int J Cancer 2012;131:2349 2) Clifford GM, Cancer Epidemiol Biomarkers Prev 2005;14:1107
(Continued on next page)

Table 16: Type-specific HPV prevalence among invasive cervical cancer cases in Ethiopia by histology

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Any Histology</th>
<th>Squamous cell carcinoma</th>
<th>Adenocarcinoma</th>
<th>Unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. tested</td>
<td>HPV Prev % (95% CI)</td>
<td>No. tested</td>
<td>HPV Prev % (95% CI)</td>
</tr>
<tr>
<td>ONCOGENIC HPV TYPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk HPV types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>291</td>
<td>78.4 (73.3-82.7)</td>
<td>281</td>
<td>80.1 (75.0-84.3)</td>
</tr>
<tr>
<td>18</td>
<td>291</td>
<td>18.2 (14.2-23.1)</td>
<td>281</td>
<td>18.9 (14.7-23.8)</td>
</tr>
<tr>
<td>31</td>
<td>291</td>
<td>2.7 (1.4-5.3)</td>
<td>281</td>
<td>2.8 (1.4-5.5)</td>
</tr>
<tr>
<td>33</td>
<td>128</td>
<td>6.3 (3.2-11.8)</td>
<td>128</td>
<td>6.3 (3.2-11.8)</td>
</tr>
<tr>
<td>35</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>39</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>45</td>
<td>291</td>
<td>6.5 (4.2-10.0)</td>
<td>281</td>
<td>6.8 (4.4-10.3)</td>
</tr>
<tr>
<td>51</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>52</td>
<td>291</td>
<td>10.0 (7.0-13.9)</td>
<td>281</td>
<td>10.3 (7.3-14.4)</td>
</tr>
<tr>
<td>56</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>59</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>Probable/possible carcinogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>53</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>291</td>
<td>3.1 (1.6-5.8)</td>
<td>281</td>
<td>3.2 (1.7-6.0)</td>
</tr>
<tr>
<td>67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NON-ONCOGENIC HPV TYPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>291</td>
<td>4.1 (2.4-7.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>291</td>
<td>0.0 (0.0-1.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
</tr>
<tr>
<td>43</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
<td>128</td>
<td>3.9 (1.7-8.8)</td>
</tr>
<tr>
<td>54</td>
<td>128</td>
<td>0.0 (0.0-2.9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>128</td>
<td>0.8 (0.1-4.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

No Data Available | - | - | - | - | - | - |

Data updated on 19 May 2017 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; The samples for HPV testing come from cervical specimens (fresh / fixed biopsies or exfoliated cells).

Data sources:
- Based on meta-analysis performed by IARC’s Infections and Cancer Epidemiology Group up to November 2011, the ICO HPV Information Centre has updated data until June 2014.
4.1.3 HPV type distribution among HIV+ women with normal cervical cytology

Table 17: Studies on HPV prevalence among HIV women with normal cytology in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence (%) (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 31 Jul 2013 (data as of 31 Dec 2011). Only for European countries.

Data sources

Systematic review and meta-analysis were performed by the ICO HPV Information Centre up to December 2011. Selected studies had to include at least 20 HIV positive women who had both normal cervical cytology and HPV test results (PCR or HC2).
4.1.4 Terminology

Cytologically normal women
No abnormal cells are observed on the surface of their cervix upon cytology.

Cervical Intraepithelial Neoplasia (CIN) / Squamous Intraepithelial Lesions (SIL)
SIL and CIN are two commonly used terms to describe precancerous lesions or the abnormal growth of squamous cells observed in the cervix. SIL is an abnormal result derived from cervical cytological screening or Pap smear testing. CIN is a histological diagnosis made upon analysis of cervical tissue obtained by biopsy or surgical excision. The condition is graded as CIN 1, 2 or 3, according to the thickness of the abnormal epithelium (1/3, 2/3 or the entire thickness).

Low-grade cervical lesions (LSIL/CIN-1)
Low-grade cervical lesions are defined by early changes in size, shape, and number of abnormal cells formed on the surface of the cervix and may be referred to as mild dysplasia, LSIL, or CIN-1.

High-grade cervical lesions (HSIL/ CIN-2 / CIN-3 / CIS)
High-grade cervical lesions are defined by a large number of precancerous cells on the surface of the cervix that are distinctly different from normal cells. They have the potential to become cancerous cells and invade deeper tissues of the cervix. These lesions may be referred to as moderate or severe dysplasia, HSIL, CIN-2, CIN-3 or cervical carcinoma in situ (CIS).

Carcinoma in situ (CIS)
Preinvasive malignancy limited to the epithelium without invasion of the basement membrane. CIN 3 encompasses the squamous carcinoma in situ.

Invasive cervical cancer (ICC) / Cervical cancer
If the high-grade precancerous cells invade the basement membrane is called ICC. ICC stages range from stage I (cancer is in the cervix or uterus only) to stage IV (the cancer has spread to distant organs, such as the liver).

Invasive squamous cell carcinoma
Invasive carcinoma composed of cells resembling those of squamous epithelium.

Adenocarcinoma
Invasive tumour with glandular and squamous elements intermingled.
4.2 HPV burden in anogenital cancers other than cervix

Methods: Prevalence and type distribution of human papillomavirus in carcinoma of the vulva, vagina, anus and penis: systematic review and meta-analysis

A systematic review of the literature was conducted on the worldwide HPV-prevalence and type distribution for anogenital carcinomas other than cervix from January 1986 to 'data as of' indicated in each section. The search terms for the review were 'HPV' AND (anus OR anal) OR (penile) OR vagina* OR vulv* using Pubmed. There were no limits in publication language. References cited in selected articles were also investigated. Inclusion criteria were: HPV DNA detection by means of PCR, a minimum of 10 cases by lesion and a detailed description of HPV DNA detection and genotyping techniques used. The number of cases tested and HPV positive cases were extracted for each study to estimate the prevalence of HPV DNA and the HPV type distribution. Binomial 95% confidence intervals were calculated for each HPV prevalence.

4.2.1 Anal cancer and precancerous anal lesions

Anal cancer is similar to cervical cancer with respect to overall HPV DNA positivity, with approximately 88% of cases associated with HPV infection worldwide (de Martel C et al. Lancet Oncol 2012;13(6):607-15). HPV16 is the most common type detected, representing 73% of all HPV-positive tumours. HPV18 is the second most common type detected and is found in approximately 5% of cases. HPV DNA is also detected in the majority of precancerous anal lesions (AIN) (91.5% in AIN1 and 93.9% in AIN2/3) (De Vuyst H et al. Int J Cancer 2009; 124: 1626-36). In this section, the burden of HPV among cases of anal cancers and precancerous anal lesions in Ethiopia are presented.

Table 18: Studies on HPV prevalence among anal cancer cases in Ethiopia (male and female)

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).
95% CI: 95% Confidence Interval.

Data sources:

Table 19: Studies on HPV prevalence among cases of AIN2/3 in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).
95% CI: 95% Confidence Interval; AIN 2/3: Anal intraepithelial neoplasia of grade 2/3.

Data sources:
Figure 31: Comparison of the ten most frequent HPV types in anal cancer cases in Africa and the World

![Graph comparing HPV types in anal cancer cases in Africa and the World.](image)

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).

a Includes cases from Mali, Nigeria and Senegal.

b Includes cases from Europe (Bosnia-Herzegovina, Czech Republic, France, Germany, Poland, Portugal, Slovenia, Spain and United Kingdom), America (Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay and United States); Africa (Mali, Nigeria and Senegal); Asia (Bangladesh, India and South Korea)

Data sources:

Data from Alemany L, Int J Cancer 2015; 136: 98. This study has gathered the largest international series of anal cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.

Figure 32: Comparison of the ten most frequent HPV types in AIN 2/3 cases in Africa and the World

![Graph comparing HPV types in AIN 2/3 cases in Africa and the World.](image)

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).

a Includes cases from Europe (Bosnia-Herzegovina, Czech Republic, France, Germany, Poland, Portugal, Slovenia, Spain and United Kingdom), America (Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay)

Data sources:

Data from Alemany L, Int J Cancer 2015; 136: 98. This study has gathered the largest international series of anal cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.
4.2.2 Vulvar cancer and precancerous vulvar lesions

HPV attribution for vulvar cancer is 43% worldwide (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Vulvar cancer has two distinct histological patterns with two different risk factor profiles: (1) basaloid/warty types (2) keratinising types. Basaloid/warty lesions are more common in young women, are frequently found adjacent to VIN, are very often associated with HPV DNA detection (86%), and have a similar risk factor profile as cervical cancer. Keratinising vulvar carcinomas represent the majority of the vulvar lesions (>60%). These lesions develop from non HPV-related chronic vulvar dermatoses, especially lichen sclerosus and/or squamous hyperplasia, their immediate cancer precursor lesion is differentiated VIN, they occur more often in older women, and are rarely associated with HPV (6%) or with any of the other risk factors typical of cervical cancer. HPV prevalence is frequently detected among cases of high-grade VIN (VIN2/3) (85.3%). HPV 16 is the most common type detected followed by HPV 33 (De Vuyst H et al. Int J Cancer 2009; 124: 1626-36). In this section, the HPV burden among cases of vulvar cancer cases and precancerous vulvar lesions in Ethiopia are presented.

Table 20: Studies on HPV prevalence among vulvar cancer cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval;

Data sources:

Table 21: Studies on HPV prevalence among VIN 2/3 cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; VIN 2/3: Vulvar intraepithelial neoplasia of grade 2/3;

Data sources:
Figure 33: Comparison of the ten most frequent HPV types in cases of vulvar cancer in Africa and the World

Africa (a)

10th*
9th*
8th*
7th*
6th*
5th*
52
45
18
16
0 10 20 30 40 50 60
4.2
4.2
4.2
58.3

World (b)

56
51
52
44
31
6
45
18
33
16
0 10 20 30 40 50 60
0.4
0.4
0.5
0.6
0.6
0.6
0.9
1.5
1.8
19.4

Type−specific HPV prevalence (%) of vulvar cancer cases

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).

a Includes cases from Mali, Mozambique, Nigeria, and Senegal.

b Includes cases from America (Argentina, Brazil, Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Uruguay, United States of America and Venezuela); Africa (Mali, Mozambique, Nigeria, and Senegal); Oceania (Australia and New Zealand); Europe (Austria, Belarus, Bosnia-Herzegovina, Czech Republic, France, Germany, Greece, Italy, Poland, Portugal, Spain and United Kingdom); and in Asia (Bangladesh, India, Israeli, South Korea, Kuwait, Lebanon, Philippines, Taiwan and Turkey)

Data sources:
Data from de Sanjosé S, Eur J Cancer 2013; 49: 3450. This study has gathered the largest international series of vulva cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.

Figure 34: Comparison of the ten most frequent HPV types in VIN 2/3 cases in Africa and the World

Africa

1st*
2nd*
3rd*
4th*
5th*
6th*
7th*
8th*
9th*
10th*

No data available

World (a)

16
33
6
6
18
31
52
51
56
66
16
33
10.2
6
2.4
6
2.4
18
1.9
31
1.1
52
1.4
51
1.2
56
0.9
74
0.9
66
0.7
0 10 20 30 40 50 60 70

Type−specific HPV prevalence (%) of VIN 2/3 cases

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).

a Includes cases from America (Argentina, Brazil, Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Uruguay and Venezuela); Oceania (Australia and New Zealand); Europe (Austria, Belarus, Bosnia-Herzegovina, Czech Republic, France, Germany, Greece, Italy, Poland, Portugal, Spain and United Kingdom); and in Asia (Bangladesh, India, Israel, South Korea, Kuwait, Lebanon, Philippines, Taiwan and Turkey)

Data sources:
Data from de Sanjosé S, Eur J Cancer 2013; 49: 3450. This study has gathered the largest international series of vulva cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.
4.2.3 Vaginal cancer and precancerous vaginal lesions

Vaginal and cervical cancers share similar risk factors and it is generally accepted that both carcinomas share the same aetiology of HPV infection although there is limited evidence available. Women with vaginal cancer are more likely to have a history of other ano-genital cancers, particularly of the cervix, and these two carcinomas are frequently diagnosed simultaneously. HPV DNA is detected among 70% of invasive vaginal carcinomas and 91% of high-grade vaginal neoplasias (VaIN2/3). HPV16 is the most common type in high-grade vaginal neoplasias and it is detected in at least 70% of HPV-positive carcinomas (de Martel C et al. Lancet Oncol 2012;13(6):607-15; De Vuyst H et al. Int J Cancer 2009;124:1626-36). In this section, the HPV burden among cases of vaginal cancer cases and precancerous vaginal lesions in Ethiopia are presented.

Table 22: Studies on HPV prevalence among vaginal cancer cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval.

Table 23: Studies on HPV prevalence among VaIN 2/3 cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).

95% CI: 95% Confidence Interval; VaIN 2/3: Vaginal intraepithelial neoplasia of grade 2/3.

ICO/IARC HPV Information Centre
Figure 35: Comparison of the ten most frequent HPV types in cases of vaginal cancer in Africa and the World

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).
*No data available. No more types than shown were tested or were positive.
Data sources:
Data from Alemany L, Eur J Cancer 2014; 50: 2846. This study has gathered the largest international series of vaginal cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.

Figure 36: Comparison of the ten most frequent HPV types in VaIN 2/3 cases in Africa and the World

Data updated on 09 Feb 2017 (data as of 30 Jun 2014).
*No data available. No more types than shown were tested or were positive.
Data sources:
Data from Alemany L, Eur J Cancer 2014; 50: 2846. This study has gathered the largest international series of vaginal cancer cases and precancerous lesions worldwide using a standard protocol with a highly sensitive HPV DNA detection assay.
4.2.4 Penile cancer and precancerous penile lesions

HPV DNA is detectable in approximately 50% of all penile cancers (de Martel C et al. Lancet Oncol 2012;13(6):607-15). Among HPV-related penile tumours, HPV16 is the most common type detected, followed by HPV18 and HPV types 6/11 (Miralles C et al. J Clin Pathol 2009;62:870-8). Over 95% of invasive penile cancers are SCC and the most common penile SCC histologic sub-types are keratinising (49%), mixed warty-basaloid (17%), verrucous (8%), warty (6%), and basaloid (4%). HPV is commonly detected in basaloid and warty tumours but is less common in keratinising and verrucous tumours. In this section, the HPV burden among cases of penile cancer cases and precancerous penile lesions in Ethiopia are presented.

Table 24: Studies on HPV prevalence among penile cancer cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).
95% CI: 95% Confidence Interval;

Data sources:

Table 25: Studies on HPV prevalence among PeIN 2/3 cases in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted Method</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data updated on 11 Jun 2019 (data as of 30 Jun 2015).
95% CI: 95% Confidence Interval; PeIN 2/3: Penile intraepithelial neoplasia of grade 2/3;

Data sources:
Figure 37: Comparison of the ten most frequent HPV types in cases of penile cancer in Africa and the World

<table>
<thead>
<tr>
<th>Type</th>
<th>Africa (a)</th>
<th>World (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5.3</td>
<td>6.7</td>
</tr>
<tr>
<td>30</td>
<td>5.3</td>
<td>6.1</td>
</tr>
<tr>
<td>33</td>
<td>5.3</td>
<td>5.7</td>
</tr>
<tr>
<td>52</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>5th*</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>6th*</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>7th*</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>8th*</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>9th*</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>10th*</td>
<td></td>
<td>5.3</td>
</tr>
</tbody>
</table>

Type-specific HPV prevalence (%) of penile cancer cases

<table>
<thead>
<tr>
<th>Type</th>
<th>Africa (a)</th>
<th>World (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>52</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>59</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>74</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Type-specific HPV prevalence (%) of penile cancer cases

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2015).

Incorporates cases from Mozambique, Nigeria, Senegal
Includes cases from Australia, Bangladesh, India, South Korea, Lebanon, Philippines, Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Venezuela, Mozambique, Senegal, Czech Republic, France, Greece, Poland, Portugal, Spain and United Kingdom.

Data sources:

Figure 38: Comparison of the ten most frequent HPV types in PeIN 2/3 cases in Africa and the World

<table>
<thead>
<tr>
<th>Type</th>
<th>Africa</th>
<th>World (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st*</td>
<td></td>
<td>69.4</td>
</tr>
<tr>
<td>2nd*</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>3rd*</td>
<td>33.1</td>
<td></td>
</tr>
<tr>
<td>4th*</td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>5th*</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>6th*</td>
<td>51.3</td>
<td></td>
</tr>
<tr>
<td>7th*</td>
<td>52.3</td>
<td></td>
</tr>
<tr>
<td>8th*</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>9th*</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>10th*</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.4</td>
<td></td>
</tr>
</tbody>
</table>

Type-specific HPV prevalence (%) of PeIN 2/3 cases

*No data available. No more types than shown were tested or were positive.

Data updated on 09 Feb 2017 (data as of 30 Jun 2015).

Incorporates cases from Australia, Bangladesh, India, South Korea, Lebanon, Philippines, Chile, Colombia, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Venezuela, Mozambique, Senegal, Czech Republic, France, Greece, Poland, Portugal, Spain and United Kingdom.

Data sources:
4.3 HPV burden in men

The information to date regarding anogenital HPV infection is primarily derived from cross-sectional studies of selected populations such as general population, university students, military recruits, and studies that examined husbands of control women, as well as from prospective studies. Special subgroups include mainly studies that examined STD (sexually transmitted diseases) clinic attendees, MSM (men who have sex with men), HIV positive men, and partners of women with HPV lesions, CIN (cervical intraepithelial neoplasia), cervical cancer or cervical carcinoma in situ. Globally, prevalence of external genital HPV infection in men is higher than cervical HPV infection in women, but persistence is less likely. As with genital HPV prevalence, high numbers of sexual partners increase the acquisition of oncogenic HPV infections (Vaccine 2012, Vol. 30, Suppl 5). In this section, the HPV burden among men in Ethiopia is presented.

Methods

HPV burden in men was based on published systematic reviews and meta-analyses (Dunne EF, J Infect Dis 2006; 194: 1044, Smith JS, J Adolesc Health 2011; 48: 540, Olesen TB, Sex Transm Infect 2014; 90: 455, and Hebnes JB, J Sex Med 2014; 11: 2630) up to October 31, 2015. The search terms for the review were human papillomavirus, men, polymerase chain reaction (PCR), hybrid capture (HC), and viral DNA. References cited in selected articles were also investigated. Inclusion criteria were: HPV DNA detection by means of PCR or HC (ISH if data are not available for the country), and a detailed description of HPV DNA detection and genotyping techniques used. The number of cases tested and HPV positive cases were extracted for each study to estimate the anogenital prevalence of HPV DNA. Binomial 95% confidence intervals were calculated for each anogenital HPV prevalence.

Table 26: Studies on HPV prevalence among men in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>Anatomic sites samples</th>
<th>HPV detection method</th>
<th>Population</th>
<th>Age (years)</th>
<th>HPV prevalence No</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

95% CI: 95% Confidence Interval;
Data sources:

Table 27: Studies on HPV prevalence among men from special subgroups in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>Anatomic sites samples</th>
<th>HPV detection method</th>
<th>Population</th>
<th>Age (years)</th>
<th>HPV prevalence No</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

95% CI: 95% Confidence Interval;
Data sources:
4.4 HPV burden in the head and neck

The last evaluation of the International Agency for Research in Cancer (IARC) on the carcinogenicity of HPV in humans concluded that (a) there is enough evidence for the carcinogenicity of HPV type 16 in the oral cavity, oropharynx (including tonsil cancer, base of tongue cancer and other oropharyngeal cancer sites), and (b) limited evidence for laryngeal cancer (IARC Monograph Vol 100B). There is increasing evidence that HPV-related oropharyngeal cancers constitute an epidemiological, molecular and clinical distinct form as compared to non HPV-related ones. Some studies indicate that the most likely explanation for the origin of this distinct form of head and neck cancers associated with HPV is a sexually acquired oral HPV infection that is not cleared, persists and evolves into a neoplastic lesion. The most recent figures estimate that 25.6% of all oropharyngeal cancers are attributable to HPV infection with HPV16 being the most frequent type (de Martel C. Lancet Oncol. 2012;13(6):607). In this section, the HPV burden in the head and neck in Ethiopia is presented.

4.4.1 Burden of oral HPV infection in healthy population

Table 28: Studies on oral HPV prevalence among healthy in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>Method specimen collection and anatomic site</th>
<th>HPV detection method and targeted HPV types</th>
<th>Population</th>
<th>Age (years)</th>
<th>No. Tested</th>
<th>HPV prevalence (95% CI)</th>
<th>Prev. of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WOMEN</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BOTH OR UNSPECIFIED</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Data as of 29 Feb 2012. Only for European countries.
95% CI: 95% Confidence Interval;
Data sources: Systematic review and meta-analysis was performed by ICO HPV Information Centre until July 2012. PubMed was searched using the keywords oral and papillomavirus. Inclusion criteria: studies reporting oral HPV prevalence in healthy population in Europe; n > 50. Exclusion criteria: focused only in children or immunosuppressed population; not written in English; case-control studies; commentaries and systematic reviews and studies that did not use HPV DNA detection methods.

4.4.2 HPV burden in head and neck cancers

Table 29: Studies on HPV prevalence among cases of oral cavity cancer in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WOMEN</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BOTH OR UNSPECIFIED</td>
<td>No Data Available</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data as of 31 Dec 2015. Only for European countries.
95% CI: 95% Confidence Interval;
Table 30: Studies on HPV prevalence among cases of oropharyngeal cancer in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTH OR UNSPECIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data as of 31 Dec 2015. Only for European countries.
95% CI: 95% Confidence Interval;
Data sources:

Table 31: Studies on HPV prevalence among cases of hypopharyngeal or laryngeal cancer in Ethiopia

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV detection method and targeted HPV types</th>
<th>No. Tested</th>
<th>HPV prevalence % (95% CI)</th>
<th>Prevalence of 5 most frequent HPVs HPV type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTH OR UNSPECIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Data Available</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data as of 31 Dec 2015. Only for European countries.
95% CI: 95% Confidence Interval;
Data sources:
5 Factors contributing to cervical cancer

HPV is a necessary cause of cervical cancer, but it is not a sufficient cause. Other cofactors are necessary for progression from cervical HPV infection to cancer. Tobacco smoking, high parity, long-term hormonal contraceptive use, and co-infection with HIV have been identified as established cofactors. Co-infection with Chlamydia trachomatis and herpes simplex virus type-2, immunosuppression, and certain dietary deficiencies are other probable cofactors. Genetic and immunological host factors and viral factors other than type, such as variants of type, viral load and viral integration, are likely to be important but have not been clearly identified. (Muñoz N, Vaccine 2006; 24(S3): 1-10)

In this section, the prevalence of smoking, parity (fertility), oral contraceptive use, and HIV in Ethiopia are presented.

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>MALE</th>
<th>FEMALE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking of any tobacco adjusted prevalence (%) [95% CI]</td>
<td>Current</td>
<td>8.9 [6.3-12.0]</td>
<td>0.5 [0.2-0.8]</td>
</tr>
<tr>
<td>Cigarette smoking adjusted prevalence (%) [95% CI]</td>
<td>Current</td>
<td>7.5 [5.1-9.7]</td>
<td>0.2 [0.1-0.3]</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fertility rate per woman</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td>Age-specific fertility rate (per 1000 women)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19 years</td>
<td>-</td>
<td>71.2</td>
<td>-</td>
</tr>
<tr>
<td>20-24 years</td>
<td>-</td>
<td>207.0</td>
<td>-</td>
</tr>
<tr>
<td>25-29 years</td>
<td>-</td>
<td>237.0</td>
<td>-</td>
</tr>
<tr>
<td>30-34 years</td>
<td>-</td>
<td>192.0</td>
<td>-</td>
</tr>
<tr>
<td>35-39 years</td>
<td>-</td>
<td>150.0</td>
<td>-</td>
</tr>
<tr>
<td>40-44 years</td>
<td>-</td>
<td>68.0</td>
<td>-</td>
</tr>
<tr>
<td>45-49 years</td>
<td>-</td>
<td>28.0</td>
<td>-</td>
</tr>
<tr>
<td>Hormonal contraception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral contraceptive use (%) among women 15-49 yrs who are married or in union</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
</tr>
<tr>
<td>Hormonal contraception use (%) (pill, injectable or implant) among women 15-49 yrs who are married or in union</td>
<td>-</td>
<td>34.1</td>
<td>-</td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated percent of adults aged 15-49 who are living with HIV [low estimate - high estimate]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Estimated percent of young adults aged 15-24 who are living with HIV [low estimate - high estimate]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HIV prevalence (%) among female sex workers in the capital city</td>
<td>-</td>
<td>24.3</td>
<td>-</td>
</tr>
<tr>
<td>HIV prevalence (%) among men who have sex with men in the capital city</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Estimated number of adults (15+ years) living with HIV [low estimate - high estimate]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Estimated number of adults and children living with HIV [low estimate - high estimate]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Estimated number of AIDS deaths in adults and children [low estimate - high estimate]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data accessed on 22 Mar 2017.

5 Factors contributing to cervical cancer

(Continued on next page)
5 FACTORS CONTRIBUTING TO CERVICAL CANCER

(Table 32 – continued from previous page)

6 Sexual and reproductive health behaviour indicators

Sexual intercourse is the primary route of transmission of genital HPV infection. Information about sexual and reproductive health behaviours is essential to the design of effective preventive strategies against anogenital cancers. In this section, we describe sexual and reproductive health indicators that may be used as proxy measures of risk for HPV infection and anogenital cancers. Several studies have reported that earlier sexual debut is a risk factor for HPV infection, although the reason for this relationship is still unclear. In this section, information on sexual and reproductive health behaviour in Ethiopia are presented.

Table 33: Percentage of 15-year-olds who have had sexual intercourse in Ethiopia

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of 15-year-old subjects who report sexual intercourse</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

Data accessed on 16 Mar 2017.

Percentage of all 15- to 19-year-olds who report having had sex before the age of 15 years in MEASURE DHS (Demographic and Health Surveys), STATcompiler (http://www.statcompiler.com/) or HIV/AIDS Survey Indicator database (http://www.measuredhs.com/hivdata/).

Year of estimation: 2005-2010

Please refer to original source for methods of estimation.

Data sources:

Table 34: Median age at first sex in Ethiopia

Study	Male		Female			
-------	------		-------	------		
	N	Median age at first sex	N	Median age at first sex	N	Median age at first sex
Ethiopia DHS 2011						
2011	15-19 years	20.9	959	29.0	1,099	19.0
	20-24 years	21.1	1,099	29.0	1,099	19.0
	25-29 years	21.2	1,099	29.0	1,099	19.0
	30-34 years	21.3	1,099	29.0	1,099	19.0
	35-39 years	21.4	1,099	29.0	1,099	19.0
	40-44 years	21.5	1,099	29.0	1,099	19.0
	45-49 years	21.6	1,099	29.0	1,099	19.0
	50-54 years	21.7	1,099	29.0	1,099	19.0
	55-59 years	21.8	1,099	29.0	1,099	19.0
	60-64 years	21.9	1,099	29.0	1,099	19.0
	65-69 years	22.0	1,099	29.0	1,099	19.0
	70+ years	22.1	1,099	29.0	1,099	19.0

Data accessed on 16 Mar 2017.

N: number of subjects.

a Urban.
b Rural.
c Data omitted because less than 50 percent of respondents had intercourse for the first time before reaching the beginning of the age group.

Data sources:

Table 35: Marriage patterns in Ethiopia

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age at first marriage</td>
<td>25.7</td>
<td>21.2</td>
</tr>
<tr>
<td>Age-specific % of ever married</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19 years</td>
<td>2.5</td>
<td>23.1</td>
</tr>
<tr>
<td>20-24 years</td>
<td>27.7</td>
<td>68.4</td>
</tr>
<tr>
<td>25-29 years</td>
<td>68.5</td>
<td>90.4</td>
</tr>
<tr>
<td>30-34 years</td>
<td>88.3</td>
<td>95.0</td>
</tr>
<tr>
<td>35-39 years</td>
<td>95.7</td>
<td>98.1</td>
</tr>
</tbody>
</table>

(Continued on next page)
(Table 35 – continued from previous page)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-44 years</td>
<td>97.1</td>
<td>98.1</td>
</tr>
<tr>
<td>45-49 years</td>
<td>98.6</td>
<td>99.5</td>
</tr>
</tbody>
</table>

Data accessed on 16 Mar 2017.
Year of estimate: 2011.
Please refer to original source for methods of estimation.

Data sources:
7 HPV preventive strategies

It is established that well-organised cervical screening programmes or widespread good quality cytology can reduce cervical cancer incidence and mortality. The introduction of HPV vaccination could also effectively reduce the burden of cervical cancer in the coming decades. This section presents indicators on basic characteristics and performance of cervical cancer screening, status of HPV vaccine licensure and introduction in Ethiopia.

7.1 Cervical cancer screening practices

Screening strategies differ between countries. Some countries have population-based programmes, where in each round of screening women in the target population are individually identified and invited to attend screening. This type of programme can be implemented nationwide or only in specific regions of the country. In opportunistic screening, invitations depend on the individual’s decision or on encounters with health-care providers. The most frequent method for cervical cancer screening is cytology, and there are alternative methods such as HPV DNA tests and visual inspection with acetic acid (VIA). VIA is an alternative to cytology-based screening in low-resource settings (the ’see and treat’ approach). HPV DNA testing is being introduced into some countries as an adjunct to cytology screening (‘co-testing’) or as the primary screening test to be followed by a secondary, more specific test, such as cytology.

Table 36: Main characteristics of cervical cancer screening in Ethiopia

Availability of a cervical cancer screening programme	No
Quality assurance structure and mandate to supervise and to monitor the screening process	-
Active invitation to screening	-
Main screening test used for primary screening	-
Undergoing demonstration projects	VIA
Screening ages (years)	-
Screening interval or frequency of screenings	-

Data accessed on 31 Dec 2016.

It launched a 5-year cancer control strategy (October 2015), not access to the document.

α Public national cervical cancer screening program in place (Cytology/VIA/HPV testing). Countries may have clinical guidelines or protocols, and cervical cancer screening services in a private sector but without a public national program. Publicly mandat

β Self-reported quality assurance: Organised programmes provide for a national or regional team responsible for implementation and require providers to follow guidelines, rules, or standard operating procedures. They also define a quality assurance structure.

γ Self-reported active invitation or recruitment, as organised population-based programmes, identify and personally invite each eligible person in the target population to attend a given round of screening.

Data sources:
Cervical Cancer Action: a global Coalition to stop Cervical Cancer (CCa). Progress In Cervical Cancer Prevention: The CCA Report card. Update August 2015 [Accessed on August 18, 2015], available at http://www.cervicalcanceraction.org/pubs/pk01.php. The information represented there has been collected through interviews with individuals and organizations involved with the countries represented and has not been verified with individual Ministries of Health. Any omissions or inaccuracies are unintentional.

Table 37: Estimated coverage of cervical cancer screening in Ethiopia

<table>
<thead>
<tr>
<th>Reference(^a)</th>
<th>Year</th>
<th>Population</th>
<th>Urban vs rural or both (all)</th>
<th>N Women</th>
<th>Age range</th>
<th>Within the last year(s)</th>
<th>Coverage (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHS Ethiopia(^1)</td>
<td>2003</td>
<td>2002-2003</td>
<td>General female population</td>
<td>2,516</td>
<td>18-69</td>
<td>3y</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regional population</td>
<td>1,654</td>
<td>25-64</td>
<td>3y</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urban</td>
<td>2,095</td>
<td>18-69</td>
<td>3y</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rural</td>
<td>421</td>
<td>18-69</td>
<td>3y</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Data accessed on 31 Dec 2016.
WHO Household Surveys with geographical information system (GIS) multistage cluster sampling. Screening coverage among women aged 18-69.
\(^a\)Proportion of women in the total sample of the mentioned age range in the country or region that reported having a Pap smear during a given time period (e.g., last year, last 2, 3, 5 years or ever).
Data sources:

Figure 39: Estimated coverage of cervical cancer screening in Ethiopia, by age and study

Data accessed on 31 Dec 2016.
WHO Household Surveys with geographical information system (GIS) multistage cluster sampling. Screening coverage among women aged 18-69.
\(^a\)Proportion of women in the total sample of the mentioned age range in the country or region that reported having a Pap smear during a given time period (e.g., last year, last 2, 3, 5 years or ever).
Data sources:
ICO Information Centre on HPV and Cancer. Country-specific references identified in each country-specific report as general recommendation from relevant scientific organizations and/or publications.

Table 38: Estimated coverage of cervical cancer screening in Ethiopia , by region

<table>
<thead>
<tr>
<th>Region</th>
<th>N Women</th>
<th>Age range</th>
<th>LY(^a)</th>
<th>Population</th>
<th>Coverage (%)(^b)</th>
<th>Year(s) studied</th>
<th>Reference</th>
</tr>
</thead>
</table>

Data accessed on 31 Dec 2016.
\(^a\)LY: Within the last year(s).
\(^b\)Proportion of women in the total sample of the mentioned age range in the country or region that reported having a Pap smear during a given time period (e.g., last year, last 2, 3, 5 years or ever).
7.2 HPV vaccination

Table 39: National HPV Immunization programme in Ethiopia

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of introduction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Primary target age (years)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Organized catch-up age (years)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opportunistic catch-up age (years)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data updated on 11 Jul 2017 (data as of 31 Dec 2016)

a 2 doses: 0-6m if not otherwise stated. Since 2014, based on clinical trial results several agencies responsible for the scientific evaluation of medicines, like the European Medicines Agency, approved a two-dose schedule for girls aged less than 15 or 14 depending on the vaccine (Cervarix or Gardasil).
b 3-doses standard: administration of three doses following the standard vaccination schedule as 0-2-6 months for the quadrivalent vaccine or 0-1-6 months for the bivalent vaccine.

Data sources:
1 Adapted from Bruni et al 2016 Lancet Global Health (data up to October 2014).

Figure 40: Reported HPV vaccination coverage in females by birth cohort in National HPV Immunization programme in Ethiopia

8 Protective factors for cervical cancer

Male circumcision and the use of condoms have shown a significant protective effect against HPV transmission.

Table 40: Prevalence of male circumcision in Ethiopia

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prevalence % (95% CI)</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 DHS</td>
<td>92.2</td>
<td>Data from 2011 Demographic and Health Surveys (DHS)</td>
</tr>
</tbody>
</table>

(Continued on next page)
Drain 2006 20-80 Data from Demographic and Health Surveys (DHS) and other publications to categorize the country-wide prevalence of male circumcision as <20%, 20-80%, or >80%.

WHO 2007 >80 Data from Demographic and Health Surveys (DHS) and other publications to categorize the country-wide prevalence of male circumcision as <20%, 20-80%, or >80%.

Williams 2006 76 Data from Demographic and Health Surveys (DHS) and other publications.

Data accessed on 31 Aug 2015.
95% CI: 95% Confidence Interval.
Please refer to country-specific reference(s) for full methodologies.

Table 41: Prevalence of condom use in Ethiopia

Indicator	Year of estimate	Prevalence %
Condom use	2015	0.2

Please refer to original source for methods of estimation.

*a*Condom use: Proportion of male partners who are using condoms with their female partners of reproductive age (15-49 years) to whom they are married or in union by country.

Data sources:

Ethiopia 2015 PMA2020 Round 3
9 Indicators related to immunisation practices other than HPV vaccines

This section presents data on immunisation coverage and practices for selected vaccines. This information will be relevant for assessing the country’s capacity to introduce and implement the new HPV vaccines. The data are periodically updated and posted on the WHO Immunisation surveillance, assessment and monitoring website at http://who.int/immunization_monitoring/en/.

9.1 Immunisation schedule

Table 42: General immunization schedule in Ethiopia

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Schedule</th>
<th>Coverage*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacille Calmette-Guérin vaccine</td>
<td>birth; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria and Tetanus and Pertussis and Haemophilus influenzae and Hepatitis B vaccine</td>
<td>6, 10, 14 weeks; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Papillomavirus vaccine</td>
<td>9-13 years; -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated polio vaccine</td>
<td>14 weeks; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measles vaccine</td>
<td>9 months; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral polio vaccine</td>
<td>6, 10, 14 weeks; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumococcal conjugate vaccine</td>
<td>6, 10, 14 weeks; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus vaccine</td>
<td>6, 10 weeks; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus toxoid vaccine</td>
<td>1st contact pregnancy; +1, +6 months; +1, +1 year; entire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A supplementation</td>
<td>6-59 months; entire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data accessed on 27 Jan 2017.

The schedules are the country official reported figures.

Data sources:

9.2 Immunisation coverage estimates

Table 43: Immunization coverage estimates in Ethiopia

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Year of estimation</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third dose of diphtheria toxoid, tetanus toxoid and pertussis vaccine</td>
<td>2015</td>
<td>96</td>
</tr>
<tr>
<td>Third dose of hepatitis B vaccine administered to infants</td>
<td>2015</td>
<td>96</td>
</tr>
<tr>
<td>Third dose of Haemophilus influenzae type B vaccine</td>
<td>2015</td>
<td>96</td>
</tr>
<tr>
<td>Measles-containing vaccine</td>
<td>2015</td>
<td>92</td>
</tr>
<tr>
<td>Third dose of polio vaccine</td>
<td>2015</td>
<td>94</td>
</tr>
</tbody>
</table>

Data accessed on 27 Jan 2017.

The coverage figures (%) are the country official reported figures. Immunization coverage levels are presented as a percentage of a target population that has been vaccinated.

Data sources:
10 Glossary

Table 44: Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>Incidence is the number of new cases arising in a given period in a specified population. This information is collected routinely by cancer registries. It can be expressed as an absolute number of cases per year or as a rate per 100,000 persons per year (see Crude rate and ASR below). The rate provides an approximation of the average risk of developing a cancer.</td>
</tr>
<tr>
<td>Mortality</td>
<td>Mortality is the number of deaths occurring in a given period in a specified population. It can be expressed as an absolute number of deaths per year or as a rate per 100,000 persons per year.</td>
</tr>
<tr>
<td>Prevalence</td>
<td>The prevalence of a particular cancer can be defined as the number of persons in a defined population who have been diagnosed with that type of cancer, and who are still alive at the end of a given year, the survivors. Complete prevalence represents the number of persons alive at certain point in time who previously had a diagnosis of the disease, regardless of how long ago the diagnosis was, or if the patient is still under treatment or is considered cured. Partial prevalence, which limits the number of patients to those diagnosed during a fixed time in the past, is a particularly useful measure of cancer burden. Prevalence of cancers based on cases diagnosed within one, three and five are presented as they are likely to be of relevance to the different stages of cancer therapy, namely, initial treatment (one year), clinical follow-up (three years) and cure (five years). Patients who are still alive five years after diagnosis are usually considered cured since the death rates of such patients are similar to those in the general population. There are exceptions, particularly breast cancer. Prevalence is presented for the adult population only (ages 15 and over), and is available both as numbers and as proportions per 100,000 persons.</td>
</tr>
<tr>
<td>Crude rate</td>
<td>Data on incidence or mortality are often presented as rates. For a specific tumour and population, a crude rate is calculated simply by dividing the number of new cancers or cancer deaths observed during a given time period by the corresponding number of person years in the population at risk. For cancer, the result is usually expressed as an annual rate per 100,000 persons at risk.</td>
</tr>
<tr>
<td>ASR (age-standardised rate)</td>
<td>An age-standardised rate (ASR) is a summary measure of the rate that a population would have if it had a standard age structure. Standardization is necessary when comparing several populations that differ with respect to age because age has a powerful influence on the risk of cancer. The ASR is a weighted mean of the age-specific rates; the weights are taken from population distribution of the standard population. The most frequently used standard population is the World Standard Population. The calculated incidence or mortality rate is then called age-standardised incidence or mortality rate (world). It is also expressed per 100,000. The world standard population used in GLOBOCAN is as proposed by Segi [1] and modified by Doll and al. [2]. The age-standardised rate is calculated using 10 age-groups. The result may be slightly different from that computed using the same data categorised using the traditional 5 year age bands.</td>
</tr>
<tr>
<td>Cumulative risk</td>
<td>Cumulative incidence/mortality is the probability or risk of individuals getting/dying from the disease during a specified period. For cancer, it is expressed as the number of new born children (out of 100, or 1000) who would be expected to develop/die from a particular cancer before the age of 75 if they had the rates of cancer observed in the period in the absence of competing causes.</td>
</tr>
<tr>
<td>Cytologically normal women</td>
<td>No abnormal cells are observed on the surface of their cervix upon cytology.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cervical Intraepithelial Neoplasia (CIN) / Squamous Intraepithelial Lesions (SIL)</td>
<td>SIL and CIN are two commonly used terms to describe precancerous lesions or the abnormal growth of squamous cells observed in the cervix. SIL is an abnormal result derived from cervical cytological screening or Pap smear testing. CIN is a histological diagnosis made upon analysis of cervical tissue obtained by biopsy or surgical excision. The condition is graded as CIN 1, 2 or 3, according to the thickness of the abnormal epithelium (1/3, 2/3 or the entire thickness).</td>
</tr>
<tr>
<td>Low-grade cervical lesions (LSIL/CIN-1)</td>
<td>Low-grade cervical lesions are defined by early changes in size, shape, and number of abnormal cells formed on the surface of the cervix and may be referred to as mild dysplasia, LSIL, or CIN-1.</td>
</tr>
<tr>
<td>High-grade cervical lesions (HSIL / CIN-2 / CIN-3 / CIS)</td>
<td>High-grade cervical lesions are defined by a large number of precancerous cells on the surface of the cervix that are distinctly different from normal cells. They have the potential to become cancerous cells and invade deeper tissues of the cervix. These lesions may be referred to as moderate or severe dysplasia, HSIL, CIN-2, CIN-3 or cervical carcinoma in situ (CIS).</td>
</tr>
<tr>
<td>Carcinoma in situ (CIS)</td>
<td>Preinvasive malignancy limited to the epithelium without invasion of the basement membrane. CIN 3 encompasses the squamous carcinoma in situ.</td>
</tr>
<tr>
<td>Invasive cervical cancer (ICC) / Cervical cancer</td>
<td>If the high-grade precancerous cells invade the basement membrane is called ICC. ICC stages range from stage I (cancer is in the cervix or uterus only) to stage IV (the cancer has spread to distant organs, such as the liver).</td>
</tr>
<tr>
<td>Invasive squamous cell carcinoma</td>
<td>Invasive carcinoma composed of cells resembling those of squamous epithelium.</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Invasive tumour with glandular and squamous elements intermingled.</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>References included in Belarus, Bulgaria, Czech Republic, Hungary, Poland, Republic of Moldova, Romania, Russian Federation, Slovakia, and Ukraine.</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>References included in Denmark, Estonia, Finland, Iceland, Ireland, Latvia, Lithuania, Norway, Sweden, and United Kingdom of Great Britain and Northern Ireland.</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>References included in Albania, Bosnia and Herzegovina, Croatia, Greece, Italy, Malta, Montenegro, Portugal, Serbia, Slovenia, Spain, The former Yugoslav Republic of Macedonia.</td>
</tr>
<tr>
<td>Western Europe</td>
<td>References included in Austria, Belgium, France, Germany, Liechtenstein, Luxembourg, Netherlands, and Switzerland.</td>
</tr>
<tr>
<td>Europe PREHDICT</td>
<td>References included in Albania, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Israel, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Montenegro, Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania, Russian Federation, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, The former Yugoslav Republic of Macedonia, Turkey, Ukraine, and United Kingdom of Great Britain and Northern Ireland.</td>
</tr>
</tbody>
</table>
Acknowledgments

This report has been developed by the Unit of Infections and Cancer, Cancer Epidemiology Research Program, at the Institut Català d’Oncologia (ICO, Catalan Institute of Oncology) within the PREHDICT project (7th Framework Programme grant HEALTH-F3-2010-242061, PREHDICT). The HPV Information Centre is being developed by the Institut Català d’Oncologia (ICO). The Centre was originally launched by ICO with the collaboration of WHO’s Immunisation, Vaccines and Biologicals (IVB) department and support from the Bill and Melinda Gates Foundation.

Institut Català d’Oncologia (ICO), in alphabetic order

7th Framework Programme grant HPV AHEAD project: Role of human papillomavirus infection and other co-factors in the aetiology of head and neck cancer in India and Europe. Coordinated by Dr. Massimo Tommasino at IARC, International Agency of Research on Cancer, Lyon, France.
(http://cordis.europa.eu/project/rcn/100268_en.html)

International Agency for Research on Cancer (IARC)
Note to the reader

Anyone who is aware of relevant published data that may not have been included in the present report is encouraged to contact the HPV Information Centre for potential contributions.

Although efforts have been made by the HPV Information Centre to prepare and include as accurately as possible the data presented, mistakes may occur. Readers are requested to communicate any errors to the HPV Information Centre, so that corrections can be made in future volumes.

Disclaimer

The information in this database is provided as a service to our users. Any digital or printed publication of the information provided in the web site should be accompanied by an acknowledgment of HPV Information Centre as the source. Systematic retrieval of data to create, directly or indirectly, a scientific publication, collection, database, directory or website requires a permission from HPV Information Centre.

The responsibility for the interpretation and use of the material contained in the HPV Information Centre lies on the user. In no event shall the HPV Information Centre be liable for any damages arising from the use of the information.

Licensed Logo Use

Use, reproduction, copying, or redistribution of PREHDICT or HPV Information Centre logos are strictly prohibited without written explicit permission from the HPV Information Centre.

Contact information:

ICO/IARC HPV Information Centre
Institut Català d’Oncologia
Avda. Gran Via de l’Hospitalet, 199-203
08908 L’Hospitalet de Llobregat (Barcelona, Spain)
e-mail: info@hpvcentre.net
internet adress: www.hpvcentre.net